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Abstract. We study in this paper the localization of the electric field and the dielectric properties
of thin metal–dielectric composites at the percolation threshold. In particular, the effects of the loss
in the metallic components are examined. To this end, such systems are modelled as randomRL–C
networks, and the local field distribution as well as the effective conductivity are determined by
using an exact resolution of Kirchhoff equations in addition to a real-space renormalization group
method for comparison. We find a delocalization of the eigenmodes which remain weakly localized
for vanishing losses. This result seems to be in agreement with the anomalous absorption observed
experimentally for such systems.

1. Introduction

Thin metal–dielectric films have been shown experimentally to exhibit an anomalously high
absorption in the visible, near-infrared and microwave regimes at the percolation threshold
[1–4]. This effect was interpreted as cluster plasmon absorption [4, 5]. Naturally, these
mixtures should show an absorption since the dielectric constant of the metallic component is
complex and the effective dielectric constant of the whole system should then also be complex,
particularly at the classical percolation threshold (which is the point of transition of the effective
dc conductivity from insulating to conducting due to the appearance of a continuous path of
the conducting region through the sample), where from the effective-medium theory [6]

εeff = √εmεd . (1)

The indicesm, d andeff stand respectively for the metal, dielectric and effective medium.
This equation was shown to be a good approximation if the system size is much larger than
the correlation length. Therefore, equation (1) will not be valid if this quantity diverges.
From this equation, both the real and imaginary parts of the dielectric constant of the metallic
component contribute to the optical absorption of the system. However, a film with non-
dissipative components naturally should also be non-dissipative and we expect in this case
a vanishing absorption for the whole system, while equation (1) yields a non-vanishing
absorption. Therefore, this description of the effective properties of such a medium may
not be sufficient to explain the behaviour experimentally observed for such systems [1–4].
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The above-discussed experimental observation of the light absorption may then originate from
physical phenomena other than the dissipation.

Indeed, since the light has a wave behaviour, the backscattering and the interference effects
can strongly affect its propagation through a disordered system [7–9] and its localization is
enhanced by disorder [8] as well as by absorption [10]. Therefore, the localization properties
of the electromagnetic field in such systems, where absorption and disorder compete, can
be a good tool for explaining the anomalous behaviour observed in such thin composite
films, particularly at the classical percolation threshold. The classical percolation threshold in
2D square lattices of disordered bonds corresponds to a concentration of the metallic bonds
pc = 0.5 [11,12] (note that some composites carry current even below the classical percolation
threshold due to the fact that tunnelling through disconnected (dispersed) metallic regions can
give rise to some virtually connected percolating clusters [13]. This effect is not considered in
this paper).

On the other hand, giant local field fluctuations have been recently found numerically in
such films [14] at the percolation threshold and for frequencies close to a characteristic oneωres
where the conductivities of the two components have the same magnitude (|σm| = |σd |). Large
local field fluctuations have been also found in fractal 2D films [15], 3D rough surfaces [16]
and non-linear Raman scattering [17]. In both the 2D and 3D systems the electromagnetic
modes were found to be localized, probably due to such fluctuations. Furthermore, Brouers
et al[14] showed for the metal–dielectric films that the local field distribution is asymptotically
log–normal. However, from the electromagnetic field theory investigated recently by Sarychev
et al [4], we can easily deduce that the high strengths of the current (or equivalently the high
local field intensities in this case) behave as the inverse of the local transmission of light.
We conclude then that the local transmission also has a log–normal distribution for high field
strengths in such films. Therefore, if we use the analogy between the electric field in the
Helmholtz equation and the electronic wave-function in the Schrödinger equation [7], the
local transmission of the electromagnetic waves is equivalent to the electronic conductance at
zero temperature [18] where a log–normal distribution is a signature of localization [19,20].

The aim of the present paper is to investigate the localization and absorption properties of
such films modelled by a squareRL–C network, and use this approach to explain the anomalous
absorption at the percolation threshold. The local field and the effective conductivity are
calculated by using two different methods in order to compare with the results of [14]: an exact
resolution of Kirchhoff equations for such networks which we call the exact method (EM) from
now on, and a real-space renormalization group (RSRG) self-similar scheme [21]. The RSRG
method has been shown to be sufficient for the computation of the effective conductivity [21],
but the electric field has not been checked before although there is increasing use of this
method [14,22]. The degree of localization is measured by means of the inverse participation
ratio (IPR) [23] applied to the electric field, while the absorption corresponds to the real part
of the complex effective conductivity. We compare in a first step the field distribution obtained
by the two methods for different losses and frequencies, and then examine the effect of the
loss (resistance) in the metallic component on the localization as well as the absorption at the
percolation threshold.

2. Method of calculation

From Maxwell equations, one can easily relate the complex conductivity of metallic and
dielectric grains to their dielectric constant by

σm,d = −iωεm,dε0 (2)
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whereε0 is the vacuum dielectric permittivity andω the field frequency. Here the film thickness
and the size of the components must be smaller than the light wavelength in order to allow
neglect of the magnetic field variation. The dielectric constant of the insulator (assumed to be
non-dissipative) is real while that of the metal is complex and, from equation (2), its absorption
(imaginary part) is related to the real part of the conductivity.

When the field frequency is large compared to the relaxation frequency, composite metal–
dielectric films can be modelled by 2D resistor networks [4,5,24]. The effective properties of
these networks have been extensively studied during the last two decades [5, 24–26]. In the
RL–C picture, if the frequency is smaller than the plasmon frequencyωp, the capacitorsC
are the dielectric grains with a conductivityσC = −iCω and a concentration 1− p, while the
inductancesL are the metallic grains with a conductivityσL = (−iLω + R)−1 (R being the
loss), and a concentrationp is deposited or evaporated over the substrate. Therefore we can
take in this case, without loss of generality,L = C = ωres = 1 (the characteristic frequency
ωres corresponds to the case where|σm| ' |σd | for vanishing losses, i.e.,Cωres = 1/Lωres).
L andC being constants nearωres , this assumption can be generalized to any frequencyω

(smaller than the plasmon frequency) normalized toωres . The frequencyω for a given film can
easily be determined from the real values of the dielectric constants of the two components. In
fact, for a gold–glass composite,ωres ' 0.8×1016 Hz and this corresponds to the far-infrared
frequencies [27]). The metallic conductivity then becomes for small losses

σL = 1

−iω +R
≈
(

i +
R

ω

)/
ω (3)

while the dielectric conductivity is

σC = −iω. (4)

The first method (the EM), used for the calculation of the local field distribution and the
effective conductivity, consists in solving exactly Kirchhoff equations for the corresponding
2D square resistor network. This implies the use of matrices of sizeM2×M2 (whereM is the
size of the network), which are impossible to handle numerically for large samples (for memory
and computational time reasons). However, we take advantage of the sparse configuration of
such matrices and their organization in blocks in their tri-diagonal region [27]. Indeed, since
the Kirchhoff equation for a nodei uses only the voltages of its nearest-neighbour nodes, the
matrix involved here has in its diagonal region only blocks of sizes equal to the size of the film—
M×M in this case. The diagonalization and inversion of such matrices is then achieved merely
by the diagonalization and inversion of the constituent blocks. This reduces considerably the
memory and computational time requirements. We note that this method provides exactly
the same results on the effective conductivity as the Frank and Lobb method [28] but also
calculates the local field distribution through the lattice which cannot be done by the other
method. However, the time consumed remains large with this method (in particular when
averaging over a large number of configurations), and the maximum size that we reach by this
method with our computational systems is 512× 512 (which is sufficient for our statistical
treatment).

This is one of the reasons for also using the RSRG method which requires much less
computational time. This method, extensively described in previous works (see [14, 21, 29]),
consists in a transformation of the 2D square lattice into Wheatstone bridges in thex- and
y-directions (see figure 1). Each bridge is transformed into an equivalent admittance and the
size of the system is divided by 2 in each step up to a final step where the lattice is reduced to
two equivalent admittances following these directions. It is then easy to calculate by means of
this transformation the effective conductivity, while the local field distribution can be obtained
by the inverse procedure starting from the effective admittances already calculated. Although
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Figure 1. The real-space renormalization group for a square network.

this method is an approximation, it has been shown to give values of the effective conductivity
near the percolation threshold very close to the exact ones for 2D composites [29] and critical
exponents not far from the values known from percolation theory [12]. Furthermore, this
method uses only a few matrices of sizeM × M for sample sizesM, which considerably
reduces the computational memory requirement in comparison to the other methods. Then we
can easily reach sizes of 1024×1024 with the same computer configuration as for the previous
method (the EM). However, the first method (the EM) is also needed in the present work, since
the ability of the RSRG method to determine the local field has not been checked before.

As discussed in the previous section, the localization properties of the optical waves in
thin metal–dielectric composites seem to provide an interesting way to explain the anomalous
absorption observed near the percolation threshold. One of the useful quantities for studying
the localization properties in electronic systems is the inverse participation ratio (IPR) [23].
By analogy with the quantum counterpart, the local electric field in the Helmholtz equation
plays the role of the electronic wave-function in the Shrödinger equation [7] and the IPR reads

IPR=
∑
i

|Ei |4
/(∑

i

|Ei |2
)2

(5)

whereEi denotes the local electric field at sitei. The IPR has been defined for the
electronic wave-function in order to measure the spatial extent of the dominant eigenstates
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and to characterize the electronic states in disordered materials [23]. Therefore, for the
electromagnetic eigenmodes this quantity will behave as

IPR= O(M−d) for purely extended eigenmodes (6)

IPR= O(M0) for strongly localized eigenmodes. (7)

Hered denotes the Euclidean dimension of the system (d = 2 in this case) andM the size of
the system. Thus in the case of purely extended eigenmodes, the field has the same strength
over the whole surface of the film and the denominator will beM4|E|4 while the numerator is
M2|E|4 (assuming the field to be constant) leading to a decay of the IPR asM−2. In the case
of strongly localized eigenmodes, the more significant field strengths are located in a limited
area of average sizeM2

c (whereMc is the localization length). It is then obvious that the IPR
remains constant outside this area. Therefore we can estimate the degree of localization of the
local field from the power-law decay exponent of the IPR which varies from 0 (for strongly
localized eigenmodes) to−2 (for purely extended eigenmodes). This exponent is determined
by the slope of the variation of the IPR as a function of the system size on a log–log scale. It
measures also the correlation fractal dimension (−D(2)) of the local field [14,30].

3. Results and discussion

In this section we consider a film of size 512× 512. As discussed above, the RSRG method
is a good approximation for the calculation of the effective conductivity and the critical
exponents. Indeed, in a recent work by Brouerset al [29], the real conductivity calculated by
this method was in good agreement with that of the Lobb and Frank method [28]. However,
this agreement cannot be generalized to any other quantity. In particular, the value of the
effective dc conductivity at the percolation threshold depends only on the appearance of an
infinite metallic cluster channel in the sample, no matter how the bonds are distributed over the
sample [11,12]. The local field strength (which is the main quantity measuring the localization
properties of the system) depends strongly on the local configuration of the bonds. Thus, some
particular arrangements of the bonds yield a local field intensity (|E|2) of the order ofR−2

via the RSRG method. Therefore, in the limit of vanishing losses the field intensity diverges
which is unphysical (this divergence should be compensated by the dispersion of the current
through the connected neighbouring bonds, and should then occur only for an isolated two-
bondRL–C circuit). This overestimation of the local field can seriously limit the validity
of the RSRG method for describing the localization properties of these films, particularly for
vanishing losses.

In figures 2 we compare the distributions of the logarithm of the local field intensity
obtained by the RSRG method to those from the EM for sample sizes 512× 512, for two
different losses and two different frequencies, in order to check the validity of the RSRG
method in calculating the local field. The RSRG distributions seem to be wider with much
larger field strengths than the EM distributions (supporting the previous discussion on the
overestimation of the field by the RSRG method) which seem to be perfectly log–normal for any
loss and frequency. Furthermore, other peaks of small field strengths appear in the distributions
obtained by the RSRG method, particularly for small losses and at the characteristic frequency
(ω = 1), while for larger losses and different frequencies these peaks seem to move to
larger field strengths and overlap with the main one, contributing to its broadening. This
behaviour strongly affects the IPR calculations since the broadening of the field distribution
means an increase of the degree of localization [19, 20]. However, the additional peaks
appearing for small losses in the RSRG method should contribute only slightly to the IPR
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Figure 2. The distribution of the local field intensity log(|E|2) for ω = 1: (a) R = 10−1,
(b) R = 10−6; andω = 1/8: (c)R = 10−1, (d)R = 10−6. Solid curves correspond to the EM
calculations and dashed curves to the RSRG method.

since they are many orders of magnitude smaller than the main peak. Therefore, although
the distributions of the field for the RSRG method are clearly different from the exact ones
(from the EM), it seems that the results from the renormalization group method forω = 1 fit
better the localization properties of these films in comparison with those for other frequencies.
Therefore, we will restrict ourselves to the characteristic frequency (ω = 1) for the rest of the
paper.

In figures 3, by using both the RSRG method and the EM, we show the real part of the
conductivity averaged over 100 samples of size 512× 512 (figure 3(a)) and the slope of the
IPR (figure 3(b)) as functions of the loss parameterR. In figure 3(a) the conductivity tends
to vanish as a power law for small losses with an exponent close to 1 and a non-monotonic
behaviour due to strong statistical fluctuations forR < 10−4, while it tends to saturate at
1/2 for larger losses (where the conductivity seems to be self-averaged). This behaviour
for vanishing losses supports our previous discussion on the dissipation of the film in this
limit. It disagrees then with the effective-medium predictions (equation (1)) where the real
conductivity should saturate at 1 forR → 0. This discrepancy can be explained by the
correlation length which should become greater than the sample size or by its divergence
for vanishing losses where the effective-medium relation (1) is not valid. Although a slight
difference is shown between the two methods in figure 3(a), they follow qualitatively the same
behaviour for small losses, confirming the validity of the RSRG method for the calculation
of the conductivity. However, the IPR shows a delocalization (for the RSRG method) as the
loss increases; this is opposite to the case for the EM which yields the inverse behaviour
(see figure 3(b)). Indeed, for the same configuration, an increase of the loss corresponds to
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Figure 3. (a) The real part of the effective conductivity in a log–log plot and (b) the slope of the
IPR in a semi-log plot as functions of the loss parameterR for ω = 1. Open squares correspond to
the RSRG method and solid squares to the EM. The conductivity is averaged over 50 samples and
the IPR is calculated for only one configuration.

an increase of the absorption as shown in figure 3(a), which enhances the localization [10].
This confirms the failure of the renormalization group method in describing the localization
properties of the system, due to the overestimated field strengths and fluctuations obtained
by this method which broaden the distributions shown in figure 2. On the other hand, the
IPR exponent obtained by the EM seems to saturate at the value−1.3 in the region of
small losses (see figure 3(b)) indicating that the eigenmodes are not purely extended even
for vanishing losses (from (6), an exponent−2 corresponds to a constant field through the
film while the exponent−1.3 corresponds to clusters of large field strengths appearing in
different regions of the whole film). Note that in the limitR = 0 the localization is due
only to the disorder in the constituent conductivities (Anderson-like weak localization). The
disorder here does not come from the strength of the conductivity (since the conductivities
of the two components have the same strength at zero loss) but from its phase which takes
randomly two values: +π/2 for the metal from (3) and−π/2 for the dielectric component from
(4) for vanishing losses, while for larger losses, in addition to the dissipation, this Anderson
localization is enhanced as the degree of disorder is enhanced by the difference between the
conductivities of the two components (||σm| − |σd ||) which becomes finite. Therefore, even
for vanishing losses, where the system becomes non-dissipative, the field energy remains
confined in regions of the film where it resonates between the superconductorL and the
dielectricC.

As shown for the conductivity, the IPR in the region of loss between 10−3 and 10−6 shows
also a non-monotonic behaviour, from figure 3(b). This is probably a signature of a phase
transition from localized to extended eigenmodes. It seems that this phase transition can be
characterized by the statistical properties of the conductivity and the electric field. Making an
analogy with the conductance fluctuations in quantum systems is then possible.



290 L Zekri et al

4. Conclusions

In this article we have studied, by using the RSRG method and the EM, the localization and
absorption properties of the electromagnetic field in a thin semicontinuous metal–dielectric
film for a characteristic frequencyωres = 1 at the classical percolation threshold. It seems
that the results for the real part of the effective conductivity within the RSRG method agree
qualitatively with the exact calculations (by the EM) and yields the expected power-law
behaviour for vanishing loss which is a scaling effect. However, this RSRG method fails
to provide the right behaviour of the IPR, due to the large field strengths and fluctuations
obtained in comparison with the EM results. On the other hand, the IPR saturates at−1.3
for vanishing losses, indicating localized clusters of large field strengths through the whole
system. Therefore, we can explain the anomalous absorption observed by a confinement of the
electric field in small regions of the film at the percolation threshold, which corresponds to a
resonating oscillation between the components of the system. We found also in figure 3(a) that
the effective conductivity strongly fluctuates in the region of the loss between 10−3 and 10−6

while it is self-averaged for larger losses. This motivated an extensive study of the statistical
properties of the effective conductivity for these losses and for different metallic concentrations.
This investigation is described in the next paper. It is also important to examine the effect of
local arrangement of the metal (existing in realistic films) on these properties. In this case even
the percolation concept should change.

Acknowledgments

Two of us (LZ and NZ) would like to acknowledge the hospitality of the ICTP enjoyed during
the progress of this work.

References

[1] Gadenne P, Beghadi A and Lafait J 1988Opt. Commun.6517
[2] Yagil Y, Yosefin M, Bergman D J, Deutscher G and Gadenne P 1991Phys. Rev.B 4311 342
[3] Yagil Y, Gadenne P, Julien C and Deutscher G 1992Phys. Rev.B 462503
[4] Sarychev A K, Bergman D J and Yagil Y 1995Phys. Rev.B 515366
[5] Brouers F, Clerc J P, Giraud G, Laugier J M and Randriamantany Z A 1993Phys. Rev.B 47666
[6] Bruggeman D A 1935Ann. Phys., Lpz.24636

Landauer R 1978Electrical Transport and Optical Properties of Inhomogeneous Media (AIP Conf. Proc. 40)
ed J C Garland and D B Tanner (New York: AIP) pp 2–43

Niklasson G A and Granqvist C G 1984J. Appl. Phys.553382
[7] John S 1988Comment. Condens. Matter Phys.14193
[8] Lee P A and Ramakrishnan T V 1985Rev. Mod. Phys.57287
[9] Genack A Z 1987Phys. Rev. Lett.582043

Genack A Z and Garcia N 1991Phys. Rev. Lett.662064
[10] Gupta A K and Jayannavar A M 1995Phys. Rev.B 521456

Yosefin M 1994Europhys. Lett.25675
[11] Stauffer D and Aharony A 1994Percolation Theory2nd edn (London: Taylor and Francis)

Efros A L and Shklovskii B I 1976Phys. Status Solidi76475
[12] Bergman D J and Stroud D 1992Solid State Physicsvol 46 (New York: Academic) p 147
[13] Fritzsche H and Pollak M (ed) 1990Hopping and Related Phenomena(Singapore: World Scientific)

Pollak M and Shklovskii B 1991Hopping Transport in Solids(Amsterdam: Elsevier–North-Holland)
Chen I-G and Johnson W B 1992J. Mater. Sci.275497
Gupta A K and Sen A K 1998Phys. Rev.B 573375

[14] Brouers F, Blacher S and Sarychev A K 1995Fractals in the Natural and Applied Sciences(London: Chapman
and Hall) p 237

[15] Stockman M I, Pandey L N, Muratov L S and Georges T F 1994Phys. Rev. Lett.722486



Metal–dielectric films at the percolation threshold 291

[16] Markel V A, Shalaev V M, Stechel E B, Kim W and Armstrong R L 1996Phys. Rev.B 532425
[17] Shalaev V M, Poliakov E Y and Markel V A 1996 Phys. Rev.B 532437
[18] Landauer R 1970Phil. Mag.21263
[19] Chase K S and Mackinnon A 1987J. Phys. C: Solid State Phys.206189

Sheng P and Zhang Z 1991J. Phys.: Condens. Matter3 4257
Markos P and Kramer B 1993Ann. Phys., Lpz.2 339

[20] Senouci K, Zekri N and Ouasti R 1996PhysicaA 23423
[21] Sarychev A K 1977Zh. Eksp. Teor. Fiz.721001

Bernasconi J 1978Phys. Rev.B 182185
[22] Brouers F, Blacher S and Sarychev A K 1998Phys. Rev.B 5815 897
[23] Bell R J and Dean P 1970Discuss. Faraday Soc.5055

Kramer B and Weaire D 1979Amorphous Semiconductorsed M H Brodsky (Berlin: Springer) p 9
Wegner F J 1980Z. Phys.B 36209

[24] Zeng X C, Hui P M and Stroud D 1989Phys. Rev.B 391063
[25] Curtin W A and Ashcroft N W 1985Phys. Rev.B 313287
[26] Clerc J P, Giraud G and Luck J M 1990Adv. Phys.39191
[27] Zekri L 1998MSc ThesisUSTO, Oran, Algeria
[28] Frank D J and Lobb C J 1988Phys. Rev.B 37302
[29] Brouers F, Sarychev A K, Blacher S and Lothaire O 1997PhysicaA 241146
[30] Mato C and Caro A 1989J. Phys.: Condens. Matter1 901


